3.10.89 \(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [989]

3.10.89.1 Optimal result
3.10.89.2 Mathematica [A] (verified)
3.10.89.3 Rubi [A] (verified)
3.10.89.4 Maple [A] (verified)
3.10.89.5 Fricas [B] (verification not implemented)
3.10.89.6 Sympy [F(-1)]
3.10.89.7 Maxima [F(-2)]
3.10.89.8 Giac [A] (verification not implemented)
3.10.89.9 Mupad [B] (verification not implemented)

3.10.89.1 Optimal result

Integrand size = 33, antiderivative size = 139 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {C x}{b^2}+\frac {2 \left (a A b^2-b^3 B-a^3 C+2 a b^2 C\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{3/2} b^2 (a+b)^{3/2} d}-\frac {\left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \]

output
C*x/b^2+2*(A*a*b^2-B*b^3-C*a^3+2*C*a*b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1 
/2*c)/(a+b)^(1/2))/(a-b)^(3/2)/b^2/(a+b)^(3/2)/d-(A*b^2-a*(B*b-C*a))*sin(d 
*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))
 
3.10.89.2 Mathematica [A] (verified)

Time = 0.96 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.94 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {C (c+d x)-\frac {2 \left (b^3 B+a^3 C-a b^2 (A+2 C)\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{3/2}}-\frac {b \left (A b^2+a (-b B+a C)\right ) \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}}{b^2 d} \]

input
Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^2,x 
]
 
output
(C*(c + d*x) - (2*(b^3*B + a^3*C - a*b^2*(A + 2*C))*ArcTanh[((a - b)*Tan[( 
c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(3/2) - (b*(A*b^2 + a*(-(b*B) 
 + a*C))*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])))/(b^2*d)
 
3.10.89.3 Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.17, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3042, 3500, 3042, 3214, 3042, 3138, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3500

\(\displaystyle -\frac {\int \frac {b (b B-a (A+C))-\left (a^2-b^2\right ) C \cos (c+d x)}{a+b \cos (c+d x)}dx}{b \left (a^2-b^2\right )}-\frac {\sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {b (b B-a (A+C))-\left (a^2-b^2\right ) C \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b \left (a^2-b^2\right )}-\frac {\sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3214

\(\displaystyle -\frac {\frac {\left (a^3 C-a b^2 (A+2 C)+b^3 B\right ) \int \frac {1}{a+b \cos (c+d x)}dx}{b}-\frac {C x \left (a^2-b^2\right )}{b}}{b \left (a^2-b^2\right )}-\frac {\sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\left (a^3 C-a b^2 (A+2 C)+b^3 B\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {C x \left (a^2-b^2\right )}{b}}{b \left (a^2-b^2\right )}-\frac {\sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3138

\(\displaystyle -\frac {\frac {2 \left (a^3 C-a b^2 (A+2 C)+b^3 B\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{b d}-\frac {C x \left (a^2-b^2\right )}{b}}{b \left (a^2-b^2\right )}-\frac {\sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {2 \left (a^3 C-a b^2 (A+2 C)+b^3 B\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b d \sqrt {a-b} \sqrt {a+b}}-\frac {C x \left (a^2-b^2\right )}{b}}{b \left (a^2-b^2\right )}\)

input
Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^2,x]
 
output
-((-(((a^2 - b^2)*C*x)/b) + (2*(b^3*B + a^3*C - a*b^2*(A + 2*C))*ArcTan[(S 
qrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b*Sqrt[a + b]*d))/ 
(b*(a^2 - b^2))) - ((A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(b*(a^2 - b^2)*d 
*(a + b*Cos[c + d*x]))
 

3.10.89.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
3.10.89.4 Maple [A] (verified)

Time = 0.20 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.27

method result size
derivativedivides \(\frac {\frac {2 C \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2}}+\frac {-\frac {2 \left (A \,b^{2}-B a b +a^{2} C \right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )}+\frac {2 \left (a A \,b^{2}-B \,b^{3}-a^{3} C +2 C a \,b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}}{b^{2}}}{d}\) \(176\)
default \(\frac {\frac {2 C \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2}}+\frac {-\frac {2 \left (A \,b^{2}-B a b +a^{2} C \right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )}+\frac {2 \left (a A \,b^{2}-B \,b^{3}-a^{3} C +2 C a \,b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}}{b^{2}}}{d}\) \(176\)
risch \(\frac {C x}{b^{2}}+\frac {2 i \left (A \,b^{2}-B a b +a^{2} C \right ) \left (a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}{b^{2} \left (-a^{2}+b^{2}\right ) d \left ({\mathrm e}^{2 i \left (d x +c \right )} b +2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) a A}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) a^{3} C}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,b^{2}}-\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) C a}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) a A}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) a^{3} C}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,b^{2}}+\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) C a}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}\) \(747\)

input
int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x,method=_RETURNVER 
BOSE)
 
output
1/d*(2*C/b^2*arctan(tan(1/2*d*x+1/2*c))+2/b^2*(-(A*b^2-B*a*b+C*a^2)*b/(a^2 
-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+ 
b)+(A*a*b^2-B*b^3-C*a^3+2*C*a*b^2)/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan( 
(a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2))))
 
3.10.89.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 257 vs. \(2 (128) = 256\).

Time = 0.34 (sec) , antiderivative size = 586, normalized size of antiderivative = 4.22 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\left [\frac {2 \, {\left (C a^{4} b - 2 \, C a^{2} b^{3} + C b^{5}\right )} d x \cos \left (d x + c\right ) + 2 \, {\left (C a^{5} - 2 \, C a^{3} b^{2} + C a b^{4}\right )} d x - {\left (C a^{4} - {\left (A + 2 \, C\right )} a^{2} b^{2} + B a b^{3} + {\left (C a^{3} b - {\left (A + 2 \, C\right )} a b^{3} + B b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \, {\left (C a^{4} b - B a^{3} b^{2} + {\left (A - C\right )} a^{2} b^{3} + B a b^{4} - A b^{5}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d\right )}}, \frac {{\left (C a^{4} b - 2 \, C a^{2} b^{3} + C b^{5}\right )} d x \cos \left (d x + c\right ) + {\left (C a^{5} - 2 \, C a^{3} b^{2} + C a b^{4}\right )} d x - {\left (C a^{4} - {\left (A + 2 \, C\right )} a^{2} b^{2} + B a b^{3} + {\left (C a^{3} b - {\left (A + 2 \, C\right )} a b^{3} + B b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (C a^{4} b - B a^{3} b^{2} + {\left (A - C\right )} a^{2} b^{3} + B a b^{4} - A b^{5}\right )} \sin \left (d x + c\right )}{{\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d}\right ] \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm= 
"fricas")
 
output
[1/2*(2*(C*a^4*b - 2*C*a^2*b^3 + C*b^5)*d*x*cos(d*x + c) + 2*(C*a^5 - 2*C* 
a^3*b^2 + C*a*b^4)*d*x - (C*a^4 - (A + 2*C)*a^2*b^2 + B*a*b^3 + (C*a^3*b - 
 (A + 2*C)*a*b^3 + B*b^4)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d* 
x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) 
 + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) 
 + a^2)) - 2*(C*a^4*b - B*a^3*b^2 + (A - C)*a^2*b^3 + B*a*b^4 - A*b^5)*sin 
(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3* 
b^4 + a*b^6)*d), ((C*a^4*b - 2*C*a^2*b^3 + C*b^5)*d*x*cos(d*x + c) + (C*a^ 
5 - 2*C*a^3*b^2 + C*a*b^4)*d*x - (C*a^4 - (A + 2*C)*a^2*b^2 + B*a*b^3 + (C 
*a^3*b - (A + 2*C)*a*b^3 + B*b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a 
*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (C*a^4*b - B*a^3*b^2 
+ (A - C)*a^2*b^3 + B*a*b^4 - A*b^5)*sin(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + 
 b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)*d)]
 
3.10.89.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**2,x)
 
output
Timed out
 
3.10.89.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm= 
"maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.10.89.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.58 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {2 \, {\left (C a^{3} - A a b^{2} - 2 \, C a b^{2} + B b^{3}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{2} b^{2} - b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {{\left (d x + c\right )} C}{b^{2}} - \frac {2 \, {\left (C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (a^{2} b - b^{3}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}}}{d} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm= 
"giac")
 
output
(2*(C*a^3 - A*a*b^2 - 2*C*a*b^2 + B*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2) 
*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c 
))/sqrt(a^2 - b^2)))/((a^2*b^2 - b^4)*sqrt(a^2 - b^2)) + (d*x + c)*C/b^2 - 
 2*(C*a^2*tan(1/2*d*x + 1/2*c) - B*a*b*tan(1/2*d*x + 1/2*c) + A*b^2*tan(1/ 
2*d*x + 1/2*c))/((a^2*b - b^3)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 
 1/2*c)^2 + a + b)))/d
 
3.10.89.9 Mupad [B] (verification not implemented)

Time = 10.86 (sec) , antiderivative size = 4556, normalized size of antiderivative = 32.78 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Too large to display} \]

input
int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + b*cos(c + d*x))^2,x)
 
output
(2*C*atan(((C*((32*tan(c/2 + (d*x)/2)*(B^2*b^6 + 2*C^2*a^6 + C^2*b^6 - 2*C 
^2*a*b^5 - 2*C^2*a^5*b + A^2*a^2*b^4 + 3*C^2*a^2*b^4 + 4*C^2*a^3*b^3 - 5*C 
^2*a^4*b^2 - 2*A*B*a*b^5 - 4*B*C*a*b^5 + 4*A*C*a^2*b^4 - 2*A*C*a^4*b^2 + 2 
*B*C*a^3*b^3))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2) + (C*((32*(A*a^4*b^5 - C* 
b^9 - A*a^2*b^7 - A*a^3*b^6 - B*b^9 + B*a^2*b^7 - B*a^3*b^6 + C*a^2*b^7 - 
3*C*a^3*b^6 + C*a^5*b^4 + A*a*b^8 + B*a*b^8 + 2*C*a*b^8))/(a*b^5 + b^6 - a 
^2*b^4 - a^3*b^3) - (C*tan(c/2 + (d*x)/2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^3*b^7 
 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*32i)/(b^2*(a*b^4 + b^5 - a^2*b^3 - a 
^3*b^2)))*1i)/b^2))/b^2 + (C*((32*tan(c/2 + (d*x)/2)*(B^2*b^6 + 2*C^2*a^6 
+ C^2*b^6 - 2*C^2*a*b^5 - 2*C^2*a^5*b + A^2*a^2*b^4 + 3*C^2*a^2*b^4 + 4*C^ 
2*a^3*b^3 - 5*C^2*a^4*b^2 - 2*A*B*a*b^5 - 4*B*C*a*b^5 + 4*A*C*a^2*b^4 - 2* 
A*C*a^4*b^2 + 2*B*C*a^3*b^3))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2) - (C*((32* 
(A*a^4*b^5 - C*b^9 - A*a^2*b^7 - A*a^3*b^6 - B*b^9 + B*a^2*b^7 - B*a^3*b^6 
 + C*a^2*b^7 - 3*C*a^3*b^6 + C*a^5*b^4 + A*a*b^8 + B*a*b^8 + 2*C*a*b^8))/( 
a*b^5 + b^6 - a^2*b^4 - a^3*b^3) + (C*tan(c/2 + (d*x)/2)*(2*a*b^9 - 2*a^2* 
b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*32i)/(b^2*(a*b^4 + b^ 
5 - a^2*b^3 - a^3*b^2)))*1i)/b^2))/b^2)/((64*(C^3*a^5 - B*C^2*b^5 + B^2*C* 
b^5 + 2*C^3*a*b^4 - C^3*a^4*b + 2*C^3*a^2*b^3 - 3*C^3*a^3*b^2 + A*C^2*a*b^ 
4 - A*C^2*a^4*b - 3*B*C^2*a*b^4 + 3*A*C^2*a^2*b^3 - A*C^2*a^3*b^2 + A^2*C* 
a^2*b^3 + B*C^2*a^2*b^3 + B*C^2*a^3*b^2 - 2*A*B*C*a*b^4))/(a*b^5 + b^6 ...